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ABSTRACT 

Using an example of A. Vershik, a class of processes is introduced with 
the property that they do not admit a standard extension. This provides 
a simple proof that Vershik's example process does not admit a standard 
extension. 

1. I n t r o d u c t i o n  

Recently, the theory of Systems of decreasing measurable partitions which was 

developed by A. Vershik [4--6] in the late sixties (1967, 1970, 1971) was used 

to solve a problem in the theory of Brownian motion and stochastic integration 

[1]. The main ingredient of the paper was a construction of a process with no 

standard extension. The first example of such a process was found by Vershik 

himself [7]. In this note, I introduce a process which is derived from Vershik's 

example and prove that it does not admit a standard extension. It follows from 

this proof that  Vershik's example does not admit a standard extension as well. 

Therefore, this note serves as a simple proof of Vershik's claim. 
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2. P a r a m e t e r i z a t i o n  and  s t a n d a r d  ex tens ion  

In this section we introduce the notions of standard extension of Markov 

processes. The restriction to Markov processes is without loss of generality since 

every process Xn, n = 1, 2 , . . .  can be represented by the Markov process X*, 

n := 1, 2 , . . . ,  where X~ = (Xn, X,~+I,...). 

Let U1,U2,...  be an i.i.d, process, where U1 is uniformly distributed in the 

unit interval I. 

Definition: Let X'  = (X~,X~, . . . ) ,  where the state space of X'~ is En, be a 

Markov process. A joining of the processes X ~, U is called a p a r a m e t e r i z a t i o n  

of X ~ if the following holds for all n _> 1: 

(1) Un is jointly independent of Un+I, Un+2,...  and X~+ 1. 

(2) There exist measurable functions f l ,  ] '2,... ; fn : (I,.=n+l) -~-~,~ such that  

X ~ =  f~(Un,X~+I) , n = l , 2 , . . . .  

If, in addition, for each n, (X~,X~+I , . . . )  is (Un, Un+l,.. .)-measurable, the 

parameterization is said to be g e n e r a t i n g  and the processes are said to admit a 

s t a n d a r d  ex tens ion .  

Notice that  every independent process admits a standard extension and that  a 

process that  admits a standard extension is ta i l  t r ivial .  Also, if Xn, n = 1, 2 , . . .  

admits a standard extension, so does every subsequent process Xk,,, n = 1, 2, . . . .  
M. Rosenblatt [2, 3] proved that every countable state, stationary mixing Markov 

chain admits a standard extension. 

3. T h e  e xa mple s  

Example: Vershik [7]. It is possible to construct a Markov chain ]I1, Y2,... such 

that each Y,~ is distributed uniformly on [0, 1]. When Yn+l, . . .  are given, the 

conditional distribution of Yn depends on Yn+l in the following manner: if Yn+l 

takes the value y, which we write in binary as .YlY2Y3"" ", then Y,~ is equal to 

either .YIY3Ys"'" or .Y2Y4Y6"" ', each with probability 1/2. Let C -- {0, 1}. Out 

of the process Yn we produce the (discrete state) process Xn as follows. Each 

X,~ is a function of Y,~ only. X1 assumes values in C according to the first binary 

digit of Y1. X2 assumes values in C 2 according to the first 2 binary digits of 112- 

In general, Xn assumes values in C 2" according to the first 2 n digits of Y,~. The 
resulting process is obviously a Markov process. 

Abstractly we have the following class V of Markov chains. 
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A CLASS OF EXAMPLES. Let X = ( X 1 , X 2 , . . . )  be a process with a Markov 

distribution defined as follows: C is a finite set (colors), ICI = K.  X1 assumes 

values from C with uniform distribution. X2 assumes as values the pair (~1,71), 

where each ~1 and 71 are values from the same set of values of X1, i.e. from C. 

The probability distribution of X2 is uniform on C 2. Inductively, X~ will assume 

as values pairs (~n-l ,Tn-1),  where ~,~-1 and 7~-1 are values from the same set 

of values of X~-I  and with the product of the same measure. So, actually X~ 

assumes values from the set ~ of 2~-tuples of colors with uniform distribution. 

The transition from Xn to X~-I  is with probability 1/2 to ~,~-1 and 1/2 to 

7~-1, provided ~ - 1  r 7~-1- Otherwise, X~-I  assumes the common value with 

probability 1. 

THEOREM 1: Each process X E V is tail-trivia/. 

Proof: Since X is Markov, it suffices to show that  for each n > 1, 

P[X,~ = x(~)lX~+,~] converges in probability to P[Xn = x (~)] as m goes to 

infinity, for each x (~) E ~ .  Any x (~+'~) E ~a+m can be viewed as a sequence of 

length 2 '~ of 2~-tuples. It is evident that P[XnIX,~+m = x (~+'~)] is uniformly 

distributed over the 2~-tuples which comprise x (~+m). Hence the above required 

convergence follows from the weak law of large numbers. 

4. T h e  m a i n  r e su l t  

THEOREM 2: No process X E V admits a standard extension. 

Before proceeding with the proof of Theorem 2 we shall introduce some more 

notation and definitions. 

Since a point x E ~n is a 2n-l- tuple of colors from C, x = ( x l , . . .  ,x2~-1), 

xi E C. Each index i can be represented by a sequence of length n - 1, w(i) = 

(wl( i ) , . . .  ,Wn-l(i)) of zeros and ones, the binary expansion of i. The set gtn of 

the binary sequences of length n -  1 has a natural tree structure. Consider An, the 

set of the tree automorphisms of Ftn. A surjective map a is a tree automorphism, 

if it maps surjectively the set of all sequences beginning with zero either onto itself 

or onto the set of all sequences beginning with one, each of these maps being a 

tree map on 12~_1. The cardinality of An is 22~-1. We define an n-distance 

n >_ 0, between any 2 points x, x' E En, as follows. 

Definition: dE(x, x ~) = min~eA . 1/2~-i~:{ilxi ~ X'a(~) }. 

Let x = (~, 7), x~ = (~, 7~), observe the following recursive relation: 

(1) dn(x,x ~) = �89 min{dn_l(~, ~ ~} -t- dn_i(7,71);dn_l(~,r/) -t- dn-l(7,~ ' )} .  
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Next,  consider a given paramete r iza t ion  p and the functions fn associated with 

it. Let us define the functions gn : ( I  n - l ,  ~n) --+ 21, n > 0, by put t ing  gl = f l  

and inductively 

9 n ( U l , . . . , U n , X n + l )  = gn- l  (Uo, . . . , Un-2, fn(Un- l ,Xn)  ). 

Verify by induct ion tha t  for all n 

Xl  = gn(U1, . . , ,gn,  Xn~-l). 

Now we define a new n-dis tance,  associated with p, on the pairs (x, x ') :  

Definition: d~ = dl, and 

dP(x ,x  ') = P [ g n ( U l , . . . , U ~ - l , x )  r gn(U1, . . . ,Un- l , x ' ) ] ,  n >  1. 

Let c = P[f(U,~-I ,  x) = ~; f(U~_~, x ' )  = ~')]; observe the following recursive 

relation: 

(2) dP(x ,x  ') -~ c { d P l ( ~ , ~ ' ) T d P _ l ( ~ , ~ ' ) } + ( � 8 9  - c){dPn_l (~, ~] ')  + dn_l(~,  ~ ' ) } . P  

LEMMA 1: For  any  n, ( x , x  r) and parameterization p, 

d~(x,x ' )  >_ dn(x,x ' ) .  

Proof: Use the recursive relations (1) and ( 2 ) t o  induct on n. 

For an integer m and e > 0, consider the function 

[,~] 

i = 0  

P u t  m = 2 n-1.  Using this nota t ion  we have the following es t imate  for any 

x r E ~n:  

# { x  e dn(x,x') < < 

Known es t imates  on the  binomial  coefficients imply the existence of a funct ion 

h(e) such t ha t  

(a) < 

(b) h(c) ~ 0 as e --+ 0. 

LEMMA 2: Given any fixed point x E ~,~, 

P[dP~(x, X,~) < e] < 2m(X+h(e))K -m(1-~). 
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Proof: Use Lemma 1 and the estimates of the cardinality of the sets En, An. 

Proof of Theorem 2: Assume first that K > 2. Suppose p is a generating 

parameterization. In particular, X1 has to be (U1,U2,...)-measurable. This 

implies that  for given c > 0 there is an n and sets En and G~ such that  En is 

(U1, . . . ,  Un)-measurable, P[En] > 3/4 and Gn is Xn-measurable; P(Gn) > 3/4 

and for any (Yl , . . . ,  Y~) C En, x, x' E Gn, 

g n ( y l , . . . ,  yn, 5) = g n ( y l , . . . ,  x'). 

That  would imply the existence of a point x E En such that 

P[4(x, xn) < > 1/2. 

This contradicts Lemma 2, since for e > 0 sufficiently small the above probability 

will be less than 1/2. 

Finally, in the case K = 2, consider X2 instead of X1. Under the assumption 

that  p generates, X2 must be generated by U2, U2,.. . .  Since [Eli = 4, the same 

reasoning as above will imply a contradiction. 
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